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Abstract
This paper puts forward a Gaussian Mixture Model (GMM) for
eye gaze behavior under workload and applies it to the anal-
ysis of gaze distributions in an automotive context. Specifi-
cally, it extends our work on Information Constrained Control
(ICC) (Hecht, Bar-Hillel, Telpaz, Tsimhoni, & Tishby, 2019)
(Hecht, Telpaz, Kamhi, Bar-Hillel, & Tisbhy, 2019) (Hecht et
al., 2015) (Hecht, Telpaz, Kamhi, Bar-Hillel, & Tishby, 2018)
by generating an ICC GMM derivative. We suggest a mea-
sure for workload estimation based on the Kullback Leibler
divergence (Dkl) between tested eye gaze distributions and a
reference workload-free distribution. This derivative assumes
diagonal Gaussians that are distant from each other. Under
these assumptions, we achieve an analytical measure that has
significantly fewer parameters than discrete grid-like distribu-
tions (Hecht, Bar-Hillel, et al., 2019). Testing our measure
on eye gazing data collected during real world driving experi-
ments in a highway environment confirms the effectiveness of
this approach.
Keywords: Information Constrained Control; Gaussian Mix-
ture Model; Eye gaze distribution

Introduction
The human visual system has a tendency to shift towards
salient regions(Harel, Koch, & Perona, 2006)(Borji & Itti,
2013); however, in the presence of a demanding task this
tendency is overridden, and the visual system shifts towards
important areas (Lavie & De Fockert, 2005)(Lavie, Hirst,
De Fockert, & Viding, 2004)(Lavie, 2010). The interac-
tion between important areas, salient areas, and workload has
fascinated researchers for decades, but has never been fully
disentangled. One hurdle to a better understanding has to
do with modeling the effect of workload on gaze distribu-
tion. For example in an automotive environment, Victor et
al. (Victor, Harbluk, & Engström, 2005) suggested several
simpler measurements for the detection of workload based
on gaze patterns (e.g., Standard Deviation of Gaze, Percent
Road Center).

The ICC (Tishby & Polani, 2011)(Rubin, Shamir, &
Tishby, 2012)(Hecht et al., 2015) constitutes an alternative
approach to modeling the effect of workload on the visual

system (Hecht, Bar-Hillel, et al., 2019) (Hecht, Telpaz, et
al., 2019) (Hecht et al., 2018). This method views one of
the goals of the visual system as finding the optimum be-
tween two contradictory goals. It aims to find a balance
between looking at salient objects and looking at important
ones. Workload interacts with this balance and causes a shift
in gaze patterns towards important areas. In previous arti-
cles, we presented derivatives of the ICC for discrete distribu-
tions (Hecht et al., 2018)(Hecht, Bar-Hillel, et al., 2019) and
for continuous Gaussian distributions (Hecht, Telpaz, et al.,
2019). Unfortunately, gaze distributions are multimodal con-
tinuous distributions, and are better modeled by multimodal
distributions. Thus here we selected Gaussian Mixture Model
(GMM) distributions which are both multimodal and contin-
uous and have a relatively small number of parameters. We
generated a GMM derivative to the ICC which we refer to as
DIG, which is short for DKL ICC GMM, where Dkl is the
Kullback Leibler divergence (Cover & Thomas, 2012).

Model
We start the formalization of DIG by defining the action
space. In our case, the actions are the direction of sight of
the visual system,or more specifically, the intersections be-
tween the two-dimensional eye gaze locations with the clos-
est objects in the field of view in an automotive environment.
The distribution of gazes over this space is far from uniform.
Rather the data are concentrated on several objects that are
far away from one another. In our case, the objects are all
located inside the vehicle and consist of the mirrors, wind-
shield, dashboard, and instrument cluster. We refer to these
two-dimensional points of intersection as the actions and de-
note them as ~x ∈ X . Figure 2 provides an example of this
space.

Information Constrained Control
We start with a short recap of the ICC for the case of a sin-
gle state (Hecht, Bar-Hillel, et al., 2019). The ICC is defined



formally as the following constrained optimization problem.
Three functions are defined over the action space X in the Eq.
1. R(~x) is the reward associated with the execution of ac-
tion ~x (looking at location ~x). Q(~x) is the saliency of action
~x. It is defined as the likelihood of execution of action ~x in a
situation where no workload exists. P(~x) is the selected dis-
tribution over X that the visual system selected to execute.
The equation has two main terms. The main part of the equa-
tion presents the optimized term. The optimization is the min-
imization of the distance between two eye gazing distribu-
tions where Q is workload-free (a.k.a. the saliency map) and
P, the selected distribution. Intuitively, the goal of this term
is to verify that P and Q are as close as possible. The sec-
ond term represents the constraint, which is reward oriented.
This term verifies that a desired level of reward is achieved.
Specifically, it is a linear averaged weighted reward. The ap-
proach associates reward with workload and associate a high
workload with a desire for high reward levels (higher θ), and
vice versa.

P̂(~x) = argminP

∫
~x∈X

P(~x) log
P(~x)
Q(~x)

d~x

s.t. (1)∫
~x∈X P(~x) = 1,

∫
~x∈X

P(~x)R(~x)≥ θ

According to the model, in a low workload condition, P and
Q are expected to be similar , whereas in a high workload
condition, it is expected that P and Q are quite different. This
suggests that the Dkl part of the equation can measure the
workload.

Model assumptions

Several assumptions were applied to simplify the model. The
first assumption was that all the distributions P(~x) are GMMs
where the input is two-dimensional ~x = (x1,x2). In addition,
we assume that each distribution is composed of M Gaus-
sians.

∀P ∈ P P(~x) =
M

∑
i=1

wP,igP,i (~x|~µP,i,ΣP,i) (2)

where P is the set of all GMM distributions and i is the Gaus-
sian identity within the distribution.

In the experiment described below, a set of participants
drove a vehicle. Each participant drove along the same route
under several workload conditions. We modeled the gaze dis-
tribution of each participant during each ride using a single
GMM distribution. Thus overall, the number of distributions
was the number of participants times the number of rides. Our
assumption regarding a constant M Gaussians is reasonable
in a driving context. For example, a single Gaussian could
be associated with looking at the middle of the road, another
Gaussian with the left mirror and a third with the instrument
cluster. In addition, we assumed that all the Gaussians had a

diagonal covariance.

∀P, i ΣP,i =

σ2
P,i,x1

0
. . .

0 σ2
P,i,xD

 (3)

where D is the input dimension (in our case D = 2). We made
this assumption to simplify the model; however, it is reason-
able from the data perspective as well. Furthermore, we as-
sumed “social distancing” of the Gaussians. Within each mix-
ture, Gaussians are very distant from one another.

∀P ∈ P d ∈ {1, . . . ,D}
i, j ∈ {1, . . . ,M}

∣∣µP,i,xd −µP, j,xd

∣∣
max

(
σP, j,xd ,σP,i,xd

) � 1 (4)

More specifically, it is reasonable to assume that the Gaus-
sian in the middle of the road is relatively distant from the
Gaussian located on the left mirror and that both of them
are distant from the instrument panel Gaussian. The distance
among the means of the Gaussians is visualized by the his-
togram presented at Fig. 2. This suggests that there is a one
to one mapping among the Gaussians in the different mix-
tures.

∀P1,P2 ∈ P , i ∈ {1, . . . ,M} ~µP1,i =~µP2,i =~µi (5)

The first Gaussian of distribution P1 shares the same mean
with the first Gaussian of the distribution P2. This assumption
is reasonable for driving scenarios as well. On one hand, it
is reasonable to assume that the instrument cluster Gaussian
is situated in the same location. On the other hand, this is
merely an approximation and the means in reality can shift
a little. In particular, this shift can be observed in Gaussians
located on the road. As the Information Constrained Con-
trol (ICC) (Hecht, Bar-Hillel, et al., 2019) (Hecht, Telpaz, et
al., 2019) (Hecht et al., 2015) (Hecht et al., 2018) (Tishby
& Polani, 2011) suggests, there is a baseline distribution Q
which models the gaze pattern in a task-free scenario. We as-
sumed this distribution to be a GMM similar to the ones in
P .

Distance from baseline distribution
The ICC‘s selected eye gaze distribution is generated by a
tradeoff between two goals: achieving a high enough level of
reward and maintaining a minimal distance from a baseline
distribution. The distance from the baseline distribution Q is
defined as:

Dkl (P,Q) =
∫

X
P(~x) log

P(~x)
Q(~x)

d~x (6)

Since the Gaussians in the mixture are located very far
from one another, we can define areas in which each Gaussian
is dominant. We define and denote by R j the area in which
the j Gaussian is dominant. Explicitly, we define dominant to
be the area in~x in which:



∀P ∈ P ∪{Q} , i, j ∈ {1, ...,M} , i 6= j

wP, jgP, j (~x|~µP, j,ΣP, j)�

� wP,igP,i (~x|~µP,i,ΣP,i) ,
ε

M−1
(7)

The Dkl is approximated by the sum over the following inte-
grals.

Dkl (P,Q)≈
M

∑
j=1

∫
R j

P(~x) log
P(~x)
Q(~x)

d~x (8)

By plugging the explicit equation of the GMM distribution
into Eq. 8 and reordering the summation, the following equa-
tion emerges:

=
M

∑
j=1

∫
R j

M

∑
i=1

wP,igP,i (~x|~µP,i,ΣP,i) log
P(~x)
Q(~x)

d~x (9)

=
M

∑
j=1

M

∑
i=1

wP,i

∫
R j

gP,i (~x|~µP,i,ΣP,i) log
P(~x)
Q(~x)

d~x (10)

We can use the definition of the region R j to explicitly write
the ratio P(~x)

Q(~x) in that region.

P(~x)
Q(~x)

=
∑

M
i=1 wP,igP,i (~x|~µP,i,ΣP,i)

∑
M
i=1 wQ,igQ,i (~x|~µQ,i,ΣQ,i)

(11)

≈
wP, jgP, j (~x|~µP, j,ΣP, j)+(M−1) ε

M−1

wQ, jgQ, j (~x|~µQ, j,ΣQ, j)+(M−1) ε

M−1
(12)

≈
wP, jgP, j (~x|~µP, j,ΣP, j)

wQ, jgQ, j (~x|~µQ, j,ΣQ, j)
(13)

By combining Eq. 10 and 13, a simplified version of the Dkl
emerges (for ease of notation the P, j Gaussian is denoted g,
without stating explicitly µP, j and ΣP, j. gP, j (~x|~µP, j,ΣP, j) is
denoted as gP, j (~x))

Dkl (P,Q)≈

≈
M

∑
j=1

M

∑
i=1

wP,i

∫
R j

gP,i (~x) log
wP, jgP, j (~x)
wQ, jgQ, j (~x)

d~x

=
M

∑
j=1

M

∑
i=1

wP,i

∫
R j

gP,i (~x) log
wP, j

wQ, j
d~x

+
M

∑
j=1

M

∑
i=1

wP,i

∫
R j

gP,i (~x) log
gP, j (~x)
gQ, j (~x)

d~x (14)

The Dkl is divided into two sets of terms. The First set of
terms focuses on the ratio between the log weights of the
Gaussians, and the second term is similar to the log likeli-
hood ratio between individual Gaussians. Our assumptions
regarding the “social distancing” of the Gaussians gave us an

opportunity to split the bigger problem of estimating the Dkl
between two GMMs into a set of smaller Dkl-like problems.
Even within the first set of terms, the Gaussians and weights
can be decoupled. The weight can be extracted from the inte-
gration:

M

∑
j=1

M

∑
i=1

wP,i

∫
R j

gP,i (~x) log
wP, j

wQ, j
d~x =

=
M

∑
j=1

M

∑
i=1

wP,i log
wP, j

wQ, j

∫
R j

gP,i (~x)d~x (15)

Our next step is to simplify the last equation by using the def-
inition of R j. Intuitively, the area R j was defined to hold most
of the probability mass of Gaussian j, and it almost does not
hold any probability mass of other Gaussians. More formally,
for cases where i = j, since the Gaussians are far away from
one another, R j covers most of the probability mass of gPi.∫

R j

gP,i (~x) =
∫

Ri

gP,i (~x)≈ 1 (16)

For the rest of the cases where i 6= j, almost no probability
mass is left. ∫

R j

gP,i (~x)≈ 0 (17)

Eq. 15 can be simplified by splitting the terms in the equation
to two groups (i 6= j,i = j). The first set of terms where i = j
remains (based on Eq. 16), while the other set where i 6= j
is nullified (based on Eq. 17). Overall, only M terms have
values different from zero (approximation).

M

∑
j=1

M

∑
i=1

wP,i log
wP, j

wQ, j

∫
R j

gP,i (~x)d~x

=
M

∑
i=1

wP,i log
wP,i

wQ,i

∫
Ri

gP,i (~x)d~x

+
M

∑
j=1

M

∑
i=0
i 6= j

wP,i log
wP, j

wQ, j

∫
R j

gP,i (~x)d~x

≈
M

∑
i=1

wP,i log
wP,i

wQ,i
·1+

M

∑
j=1

M

∑
i=0
i6= j

wP,i log
wP, j

wQ, j
·0

=
M

∑
i=1

wP,i log
wP,i

wQ,i
= Dkl ( ~wP, ~wQ) (18)

The first term of Eq. 14 is the Dkl between the two weights
vectors.
The second term of Eq. 14 can be approximated in a similar
way. We start by dividing the terms into sets (i = j,i 6= j).
Later, the terms that are associated with i 6= j are nullified
(based on Eq. 7). Eventually, only the i = j terms have value



different than zero and thus remain.

M

∑
j=1

M

∑
i=1

wP,i

∫
R j

gP,i (~x) log
gP, j (~x)
gQ, j (~x)

d~x

=
M

∑
j=1

wP, j

∫
R j

gP, j (~x) log
gP, j (~x)
gQ, j (~x)

d~x

+
M

∑
j=1

M

∑
i=0
i 6= j

wP,i

∫
R j

gP,i (~x) log
gP, j (~x)
gQ, j (~x)

d~x

≈
M

∑
j=1

wP, j

∫
R j

gP, j (~x) log
gP, j (~x)
gQ, j (~x)

d~x

(19)

The majority of the probability mass of the jth Gaussians are
located in the area R j. This suggests that integration over the
entire space is a reasonable approximation to the integration
over R j. This integration over the entire space is by definition
the Kullback Leibler divergence (Dkl) between two Gaussian
distributions.∫

R j

gP, j (~x) log
gP, j (~x)
gQ, j (~x)

d~x≈
∫

gP, j (~x) log
gP, j (~x)
gQ, j (~x)

d~x =

Dkl (gP, j (~x) ,gQ, j (~x)) (20)

Our next step is plugging Eq. 20 into Eq. 19.

M

∑
j=1

wP, j

∫
R j

gP, j (~x) log
gP, j (~x)
gQ, j (~x)

d~x≈

M

∑
j=1

wP, jDkl (gP, j (~x) ,gQ, j (~x)) (21)

This term is the weighted Dkl between the Gaussians of both
distributions.
Recall that both Gaussians have diagonal covariance. For
this case, the Dkl equals (see supporting material):

Dkl (gP, j (~x) ,gQ, j (~x)) =−
D
2
+

1
2

D

∑
d=1

log

(
σ2

Q, j,d

σ2
P, j,d

)

+
D

∑
d=1

σ2
P, j,d

2σ2
Q, j,d

+
D

∑
d=1

(
µP, j,d−µQ, j,d

)2

2σ2
Q, j,d

(22)

For Gaussians with diagonal covariance and where µP, j = µQ, j
for all j, the equation becomes:

Dkl (gP, j (~x) ,gQ, j (~x)) = (23)

= −D
2
+

1
2

D

∑
d=1

log

(
σ2

Q, j,d

σ2
P, j,d

)
+

D

∑
d=1

σ2
P, j,d

2σ2
Q, j,d

Overall, the Dkl between both distributions is presented in
Eq. 24. We refer to this value as the DIG score and it is our

measure of workload.

Dkl (P,Q)≈ (24)

≈ Dkl ( ~wP, ~wQ)+
M

∑
j=1

wP, jDkl (gP, j (~x) ,gQ, j (~x))

=
M

∑
i=1

wP,i log
wP,i

wQ,i

+
M

∑
j=1

wP, j

(
−D

2
+

1
2

D

∑
d=1

log

(
σ2

Q, j,d

σ2
P, j,d

)
+

D

∑
d=1

σ2
P, j,d

2σ2
Q, j,d

)

Approximation evaluation

Until now, we have shown the theoretical basis for our ap-
proximation. In this subsection, we evaluate it practical qual-
ity by comparing our approximation to a baseline on artificial
data. The baseline that we selected to estimate the Dkl be-
tween distributions P and Q is the difference between cross-
entropy values (Geyer, Papaioannou, & Straub, 2019). The
first step, according to this approach, is to generate a sample
set from distribution P. A large enough sample size N is se-
lected to ensure a reasonable coverage of the sample space.
In our case of two-dimensional space with four Gaussians
that had diagonal covariance matrix, N was selected to be
10,000. We denoted the i sample generated by this process
as xi. The next steps were the estimation of the cross-entropy
of the sample with the distribution P (∑N

i=1 logP(xi)) and the
distribution Q (∑N

i=1 logQ(xi)). The difference between the
two cross-entropy values (Eq. 25) is known as a good estima-
tion to the Dkl values between the two distributions.

Dkl (P,Q)≈
N

∑
i=1

log
P(xi)

Q(xi)
(25)

where {xi}N
i=1 were sampled from P.

200 pairs of P,Q distributions were randomly drawn in order
to compare the two approaches. For each pair, we approxi-
mated the Dkl using our approximation (Eq. 24). In addition,
for each pair P,Q, we drew 100 times a sample set of 10,000
samples. For each of the 100 sample sets, we estimated the
Dkl using difference of cross-entropy (Eq. 25). Out of the 100
Dkl values, their mean and standard deviation were estimated.
Figure 1 shows the results of the comparison. Each pair is
represented by its approximated value (Eq. 24) and by the
mean and standard deviation of its estimated cross-entropy.



Figure 1: This figure presents the comparison of our Dkl
approximation with the commonly used difference of cross-
entropy estimation of Dkl . The axes represent the Dkl values
according to the approaches. The green line is the optimal
condition were both approaches agree. The blue markings
represent empirical results on artificial data. Each marking
has an error bar of single standard deviation.

The green line represents the ideal situation where there
is an agreement between both approaches regarding the Dkl
values. Most of the times there is a good agreement between
the two.

Method
The effectiveness of our model was evaluated on data col-
lected during an on-road experiment with repeated trials.
The experiment is described in more detailed in (Tractinsky,
2013). The goal of the experiment was to better understand
the way participants learn a new task involving fuel-efficient
driving. We focused on a subset of participants that drove
in a vehicle that was not changed throughout the experiment.
Each participant repeated the same route four times. We as-
sociated ease of performing with Drive Identification Num-
ber (DIN). In other words, DIN is the chronological number
of the iteration /repetition. Ease of driving / performing the
task increases with DIN. The participants’ first drive is more
demanding than the second one and so on. We compared the
eye-gaze distributions over repetitions, to detect the ease of
the task (Higher DIN were associated with greater ease). We
focused on a single segment of the route, that was relatively
straight. It consisted of a highway entrance ramp and straight
segment of a highway.

Participants
Our subset was composed of twelve participants (six females
and six males), ranging in age from 25 to 63 (Mean = 31.6,
Median = 29). The participants were required to have a valid
driving license for at least two years, and confirm that they
drove on a daily basis. 6 participants were using family size

vehicle on a regular basis and 5 participants were using a
smaller. Only a single participant was using a Sport Utility
Vehicle (SUV). All were naı̈ve to the purpose of the study.
Participants stated they had normal vision. Due to techni-
cal reasons, The height of the participant was limited to 185
cm. Prior to the start of the experiment, the participants gave
their informed consent in compliance with the guidelines of
the Ben Gurion University - Institutional Review Board. At
the end of the experiment, each participant was paid a fee be-
tween 150-250 NIS (Today and during the experiment period,
1$ was worth about 3.5 NIS) based on their fuel consumption.
An additional 50 NIS was payed for extra time.

Apparatus
The experiment was conducted in an SUV from which the ve-
hicle and eye tracking data was extracted:
Vehicle data - GPS – Location of the vehicle.
Vehicle data - Fuel Consumption Efficiency (FCE) score –
Fuel consumption efficiency was extracted directly from the
vehicle.
Eye tracking – The Smart-Eye pro eye tracking system
(manufactured and developed by Smart Eye AB, Gothenburg,
Sweden; http://smarteye.se/) was used to track the partici-
pants’ eye movements. The system had two IR cameras and
two IR LEDs. Data was collected at 60 Hz.
This analysis does not involve the FCE data.

Procedure and design
The experiment started when the participants were educated
about the experiment and gave their informed consent to par-
ticipate in it. Later, a background questionnaire was filled.
Finally, after the participants were familiarized with the ve-
hicle, they were asked to drive a 7km ride. The route was
composed of an urban and highway setting. The route was
repeated four time by each participant. Following each ride,
a three minutes break was given to the participants. This rest
period was used to provide feedback regarding FCE score.
Here, we focused on the highway segment of the route. At
the end of the experiment, the participants were paid based
on their FCE score.

Independent Variable
As stated in the Method Section, the independent variable was
the Drive Identification Number (DIN). This value varied be-
tween 1 to 4. The first repetition of the route was denoted by
1 and the last was denoted by 4. Let’s recall that the partic-
ipants are going through a training process. The task is in-
troduced just before the first ride and participants are getting
more acquainted in each iteration.

Dependent Variables
The dependent variables themselves were the x and y coor-
dinates of eye gaze samples that were collected over time.
Based on those samples a set of statistics were estimated. The
statistics were the parameters of a GMM distribution. This



Figure 2: The figure presents the histogram of gaze intersection locations with objects in the field of view. The X and Y axes
are the horizontal and vertical coordinates. Light colored areas are associated with areas with high probabilistic density. Three
objects are marked by numbers in the figure. Objects 1 and 2 are the left mirror and the instrument cluster respectively. Object
3 is associated with the windshield, and the concentration of probability is linked to the focus on the road ahead.

distribution is the P distribution as presented in former equa-
tions throughout the paper. The reference GMM distribution
Q was selected to be relatively uniform. It consisted of a four
Gaussians with equal weight for each Gaussian and a vari-
ance of one. Based on the P and Q GMM distributions the
DIG scores (as presented at Eq. 24) were estimated. A DIG
score was estimated for each participant and for each partici-
pant‘s drive (12 participants X 4 drive).

Results
The overall two dimensional distribution of eye gazes over
all participants and rides is presented in Figure 2. The con-
tinuous nature of the distribution can easily be observed and
specifically its similarity to GMM distribution. The log scale
of the color scheme emphasizes that the different components
of the distribution are isolated from each other. This isola-
tion runs deep in the DIG assumptions. Our model predicts a
monotonic decrease in DIG scores. Higher DIN are expected
to have lower DIG scores (The higher the DIN, the greater
similarity to the baseline distribution). This was verified by
estimating the DIG score for each participant and each drive.
Within each participant, we conducted pairwise comparisons
for the four drives (1 vs. 2, 1 vs. 3, 1 vs. 4, 2 vs. 3, 2 vs. 4, 3
vs. 4). Within each pair, we tested whether the drive with the
higher DIN had lower DIG score. Later, for each participant,
we counted the number of times the higher DIN had a lower
DIG score. We used a proportion t-test (H0 was uniform).
The average proportion for each participant was 0.6806 rela-
tive to the alternative hypothesis of 0.5. This difference was
significant (t = 2.861718, df = 11, p = 0.015469). Figure 3
presents the histogram of DIG score differences. The differ-
ence is between the score of a ride with lower DIN and one
with higher DIN. The comparison was conducted only within
participant‘s drives. We expect rides with lower DIN to have
higher DIG score, and vice-versa; therefore, we expect the

difference between scores to be positive. The histogram was
presented for visualization purposes. One can easily observe
that shift towards the positive values.

Figure 3: The figure presents the histogram of difference be-
tween DIG scores. The experiment were followed by within
participant comparisons. Each comparison was conducted
between two rides.

Discussion and Conclusion
This paper presented and evaluated a GMM derivative for
ICC. This derivative provides an analytical solution that is
both intuitive and easy to compute. GMM is a vast family
of distributions that are commonly used. This suggests that
this derivative might be found useful. It is important to note
that although not all of the model’s assumptions held all the
time, the measure was useful. Unfortunately, due to the small



dataset, a comparison across different workload estimation
measures could not be performed. This is left for future work.
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